Category Archives: Tutorials

Creating chemigram images with caffenol ingredients

Over the past year or two I’ve done a bunch of experiments with the Chemigram process and even combined it with the Lumen process. In the work so far I’ve used various different substances as resists to control the action of the developer and fixer on the paper, thus influencing the pattern of the light & dark regions. Meanwhile for film processing at home I have been using my Caffenol-C-H-UK recipe almost exclusively as the developer. Caffenol is not just for film, it can be used for developing paper too and it occurred to me one day that instead of mixing up the caffenol in a jug, it might be interesting to just let the caffenol ingredients mix and react directly on the paper. So began a new series of chemigram experiments without using any kind of resist at all.

Caffenol is made by mixing washing soda crystals, vitamin C, instant coffee and optionally some iodized salt. The coffee and vitamin-C are the developing agents while the washing soda acts as an accelerator. The first step was to make a solution of washing soda and water and thoroughly soak the sheets of paper in it. The granules of instant coffee can be placed individually on the paper where needed, or simply sprinkled in an adhoc manner. The vitamin-C powder can just be poured or sprinkled onto the paper. The theory is that when the coffee/vitamin-c hits the wet paper it reacts with the washing soda to form caffenol on the surface. This is done in normal lighting conditions so the paper is universally and totally exposed and should gradually turn black where the caffenol has formed.

For this first test I used off-cuts of some outdated ~|40 year old) Ilford FB paper approx 5×4 inches in size. It was soaked in warmed (~25 C) washing soda solution then some coffee was sprinkled on, followed by some vitamin-C powder. After a minute or so it is possible to see hints of development along the edges where the paper is going dark gray

Caffenol chemigram initial stateAfter 5 minutes the developed areas didn’t appear to be getting any darker. I figured that since the paper was quite lightweight and moderately glossy, it was probably not able to absorb very much of the washing soda solution thus limiting how much caffenol can form. The washing soda is critical as an accelerator, without it coffee/vitamin-C are far too slow. So to try and intensify things I used a syringe to squirt on some more washing soda, which made the vitamin-C fizz very nicely. This image shows the run-off is developing the paper quite efficiently after just a minute or so:

Caffenol chemigram developing

The surprise came when I decided to wash off the ingredients. It turned out that the instant coffee had formed quite a sticky sludge which had adhered well to the paper. Given the limited water holding capacity of the paper, the areas with great concentrations of coffee granules had ironically developed the least. There is just a slight gray speckling effect where the coffee had a very limited action on the silver halides. The areas of most intense development were along the edges where the coffee and vitamin-C had mixed initially, and then in the broad areas of run-off which had well mixed caffenolCaffenol chemigram result

The process was repeated, but without pouring washing soda over the ingredients, just relying in that initially absorbed by the paper. The results were fairly similar to the first test, but with less development of the surrounding paper, as would be expected due to lack of run-off.

Caffenol chemigram resultThe results obtained were partially aligned with the initial expectations of the process but, as always when experimenting, there were surprises. In particular the inability of the paper to absorb sufficient washing soda solution was a key limiting factor in the results. It was surprising to see how the coffee + vitamin-C alone were fairly weak, but when they combined they became stronger than the sum of the parts. Finally the way the coffee became a sticky mass on the surface of the paper actually caused it to act as a chemigram resist, as well as a developer at the same time!

With the initial experiments successfully completed it was time to try some larger scale work with full sheets of 8×10 paper. The goal was really to just do more of the same but on a larger scale. The first work was fairly light on washing soda, thus forming broadly static patterns showing the texture of the vitamin-c powder and coffee granules, though there were some limited areas of runoff creating dynamic swirling patterns

Caffenol chemigramWith the second print the aim to was make a very dynamic image showing the motion of developing liquid on the surface of the paper, at the expense of any fine detail.

Caffenol chemigramPleased with the results of caffenol in a pure chemigram process, I decided to take it a step further and try to combine chemigram with a traditional B&W development process in the darkroom.

A while ago I took an simple photo of the Moon with a DSLR and teleconvertors which I then used to create a digital negative on acetate for printing as a cyanotype. Astrophotography is an increasingly popular endeavour for many people, but almost without exception the aim is to produce images with the best sharpness and finest detail the equipment will allow. An unfortunate result is that any two images of the moon will look broadly alike, and my own astrophotography images of the moon are no exception. So I decided that this digitally captured moon image would provide a good challenge as source material for creating a truly unique photographic print.

In the darkroom under safe light conditions, I placed a sheet of outdated Ilford FB 8×10 paper under the enlarger. The digital negative went on top of the paper for purpose of contact printing. From previous experience contact printing on this paper I just guesstimated the exposure at 15 seconds, with lens at f/8. The paper now has an invisible latent image ready to be worked on by the caffenol.

I soaked the paper in a washing soda solution, randomly sprinkled instant coffee and vitamin-C onto the paper and then just let it sit for a few minutes to give time for the caffenol to start working. Part way through I also added a very small amount more washing soda in some areas to encourage the development. After approximately 3-4 minutes (I wasn’t really timing this) I could see slight hints of the paper starting to turn gray in places. Washing off the caffenol residue though showed almost no development across most of the paper, which was initially disappointing.

None the less I now put the print through a regular B&W dev, stop & fix process. Rather than leaving it in the developer for the full 1 minute though, I noticed it was developing quite fast and choose to just move it to the stop bath when it “looked about right” – about 35 seconds. What was happening was that although not really visible yet, the caffenol had indeed kickstarted the development across the paper and the normal developer was just needing to finish off the process. If I had let the image site in the developer for the full 1 minute it would have been over developed and lost some of the qualities of the caffenol granulation.

The result was thus incredibly pleasing image of the moon, which I hereafter title “Moon through a dirty window”

Chemigram caffenol contact printLooking at the results obtained shows that the idea of using caffenol in a chemigram process has great possibilities for image making. On its own it can be semi-controlled to create attractive abstract images, while when combined with a regular B&W printing process it turn an otherwise plain image into an intriguingly textured pleasing artwork. I’m very much looking forward to getting back in the darkroom to further work through the possibilities this offers

Stacking multiple images to reduce noise

One of the critical problems when producing astronomical images is to minimize the amount of noise in an image, while still being able to capture the very faint detail which is barely distinguishable from noise. The post processing technique used to address this problem is to merge together multiple images of the same subject. The constant signal in the images gets emphasized while the random noise gets smoothed / cancelled out. There is specialized software to perform stacking of astronomical images to deal with alignment between subsequent frames, as the earth’s rotation can cause drift over time if the camera mount isn’t compensating. The image stacking technique is not merely something for astrophotographers to use though, it is generally applicable to any use of photography.

Image stacking in a non-astrophotography scenarios is in fact simpler than one might imagine. The only physical requirement is that the camera is fixed relative to the scene being photographed, which is trivially achieved with a tripod of other similar fixed mounting facility. In terms of camera settings, it is necessary to have consistency across all the shots, so manual focus, fixed aperture, fixed shutter speed, fixed ISO and fixed white balance are all important. With the camera configured and the subject framed, all that remains is to take a sequence of shots. How many shots to take will depend on the quality of each individual image vs the desired end result. The more noisy the initial image, the larger the number of shots that will be required. As a starting point, 10 shots may be sufficient, but as many as 100 is not unreasonable for highly noisy images.

To illustrate the versatility of the image stacking technique, rather than use images from my DSLR, I’ll use a series captured from the night vision webcam of the Wurzburg radio telescope. A single captured frame of the webcam exhibits large amounts of random noise (click image to view fullsize):

Wurburg Radio Telescope single image

 

Over the course of a few minutes, 200 still frames were captured from the webcam. The task is now to combine all 200 images into one single higher quality image. Processing 200 images in a graphical user interface is going to be painfully time consuming, so some kind of automation is desirable. The ImageMagick program is the perfect tool for the job. It has a option “-evaluate-sequence” which can be used to perform a mathematical calculation for each pixel, across a sequence of images. The idea for minimizing noise is to take the median pixel value across the set of images. Stacking the images is thus as simple as running

# convert webcam/*.jpeg -evaluate-sequence median webcam-stack.jpeg

This is pretty CPU intensive process, taking a couple of minutes to run on my 8 CPU laptop. At the end of it though, there will be a pretty impressive resulting image:

Wurzburg Radio Telescope stacked imageThe observant will have noticed the timestamp in the top left corner of the image gets mangled. This is an inevitable result of stacking process when there is part of the image which is moving/changing in every single frame. In this case it is no big deal since the timestamp can either be cropped out, cloned out, or replaced with the timestamp from one single frame. In other scenarios this behaviour might actually work to your advantage. For example, consider taking a picture of a building and a person walks through the scene. If they are only present in a relatively small subset of the total captured images (say 5 out of 100), the median calculation will “magically” remove them from the resulting image, since the pixel values the moving person contributes lie far away from the median pixel values.

Going back to our example image, the massive reduction in noise can be clearly seen if viewing at 1:1 pixel size with the two images adjacent to each other

Wurzburg Radio Telescope comparison

With the reduction in noise it is now possible to apply other post-processing techniques to the image to pull out detail that would otherwise have been lost. For example, by using curves to lighten the above image it is possible to expose detail of the structure holding up the telescope dish:

Wurzburg Radio Telescope comparisonSo next time you are in a situation where your camera’s high ISO noise performance is not adequate, consider whether you can make use of image stacking to solve the problem in post processing.

 

Combining the chemigram and lumen printing processes

Over the past few weeks I have written about experiments with the Chemigram process and most recently the Lumen printing process. When learning how to create Lumens, the intent was always to figure out how to then combine the technique with the chemigrams process to form hybrid works. The idea is that chemigrams excel at producing abstract images, while Lumens can produce some very detailed reproductions of objects being imaged. Combining the two techniques would hopefully allow the appealing aspects of both techniques to be presented in a single print.

As a refresher, with the chemigram process the image is formed by moving the paper back and forth between developer and fixer baths, often with some kind of resist applied to control the effects of the chemicals. When the desired image is achieved, a final archival fix and wash is performed. With the lumen process the image is formed by placing some object(s) on photographic paper and then leaving it in the sun for 20 minutes to many hours. When the desired image is achieved, a final archival fix and wash is again performed.

A Lumen print exhibiting varying colour tones. The image is dark purple where the paper was fully exposed, pale pink where fully obscured from light, and a yellow/brown where moisture from the leaves affected the paper

A Lumen print exhibiting varying colour tones. The image is dark purple where the paper was fully exposed, pale pink where fully obscured from light, and a yellow/brown where moisture from the leaves affected the paper

The approximate goal is to have certain regions of the paper processed with one technique, and the remainder of the paper processed with the other technique. The key challenge is figuring how to apply the processes so that their effects are localized. To expose the lumen image, the paper must not have been exposed to either fixer or developer. The chemigram process does not particularly care whether there is an image formed already, as the developer bath will obliterate any unfixed image. Thus the image formed by the lumen exposure must be protected from any developer used in the chemigram process.

Wood varnish applied to the paper as resist, and left to dry for 24 hours. Lines scored in the varnish with a blade

Chemigram created using wood varnish applied to the paper as resist, and left to dry for 24 hours. Lines scored in the varnish with a blade

A potential sequence of steps for combining the techniques would thus be

  1. Apply resist to the areas of the paper that will be using the chemigram process
  2. Expose the lumen image on the areas of paper not covered by resist
  3. Perform an archival fix on the paper, preserving the lumen image
  4. Switch between developer and fix, working on the chemigram resist
  5. Perform a second archival fix to preserve the chemigram image

Steps 1 and 2 can actually be reversed – the only requirement is that the resist be applied before doing the archival fix on the lumen image in step 3. If the chemigram resist is fairly strong, little of the fixer used in step 3 will penetrate, allowing plenty of opportunity to build up the chemigram image.

If one wants to use a soft chemigram resist, it may not be desirable to fix the lumen print before forming the chemigram image. One alternative idea would be to protect the exposed lumen image from the developer by applying a relatively hard resist over it. This gives a slightly different production sequence

  1. Expose the lumen image on the paper
  2. Cover the lumen image in a hard resist
  3. Apply a soft resist to areas of the paper that will be using the chemigram process
  4. Switch between developer and fix, working on the soft chemigram resist
  5. Switch to water/stop bath and remove the hard resist from the lumen image
  6. Perform an archival fix to preserve both the chemigram and lumen image

The hard bit is probably figuring out what is most effective as the resist over the lumen image, such that it avoids any effects from developer, while being easy to remove in a water bath.

In my first experiment at creating a hybrid I tried the first sequence using a dried flour and water paste as the hard resist for the chemigram. The flour paste was applied to a few regions of a sheet of outdated photo paper and left to dry out overnight. After that flowers were placed onto the areas not masked and exposed in the sun for 30 minutes to allow a lumen image to form

Exposing a lumen image on paper partially coated in a mask for future chemigram work.

Exposing a lumen image on paper partially coated in a mask for future chemigram work.

Once the lumen image had formed, the paper was placed straight into the fixer bath for an archival quality fix, to preserve the lumen. As ever, it was slightly disappointing to see the intensity of the raw lumen image fade in the fixer, but what remained was still attractive. With the lumen phase out of the way, it was time to work the resist to form the chemigram image. As mentioned before, the flour paste forms a relatively hard resist once dry, so it took many switches back & forth between developer and fixer to work off the resist. The paper was flexed and rubbed to encourage the resist to break up and form the abstract patterns that characterize chemigrams. The final results were very satisfying for a first experiment

Resulting print after combining the chemigram and lumen processes.

Resulting print after combining the chemigram and lumen processes.

Resulting print after combining the chemigram and lumen processes.

Resulting print after combining the chemigram and lumen processes.

Despite only having made one attempt at combining the processes, the results clearly illustrate there is good potential in the overall idea. There are many avenues of exploration available to take it forward, and I’m thinking it’ll form the basis of an interesting project over the coming months.